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Review 
The free energies of solid-liquid interfaces 

D. R. H. JONES 
Department of Metallurgy & Materials Science, University of Cambridge, UK 

The present knowledge of crystal-melt interracial energies is examined critically, con- 
sideration being given to the full range of metallic, inorganic and organic materials, both 
pure and impure. The methods currently available for measuring crystal-melt energies are 
discussed, and the significance of the experimental values in elucidating processes of 
crystal nucleation and growth is pointed out. The application of solid-liquid energy values 
to the measurement of other interphase boundary energies is indicated. 

1. Introduction 
The free energy, YsL, of the interface between a 
solid and its melt has a vital influence on nearly 
all processes involving the nucleation and growth 
of crystals from the molten state. For example, 
crystal-melt energies dictate to a large extent the 
temperatures at which solids nucleate (either 
homogeneously or heterogeneously) from their 
liquids [1, 2]. If the subsequent growth of the 
solid takes place at steps in the solid-liquid 
interface then the energy of the moving interface 
will affect the rate of transformation quite 
substantially [3]. Interfacial energy is often 
important in determining the morphology of 
growth [4, 5], and may also lead to solidification 
taking place in preferred crystallographic direc- 
tions [6]. During the latter stages of solidification 
7SL enters into phenomena such as the coarsen- 
ing of dendrites, the formation of gas bubbles 
[2], and the temperature-gradient migration of 
liquid inclusions [7], and even helps to determine 
the high-temperature stability of grain boun- 
daries [8]. 

In view of the obvious importance of the 
liquid-to-solid transformation, it is clearly 
desirable to have a quantitative knowledge both 
of interfacial energies as such and of ways in 
which these energies may be modified to practical 
advantage. In addition, interfacial energy is one 
of the very few measurable quantities that enable 
one to gain some insight into the structural 
nature of the solid-liquid interface; such 
knowledge is not only of fundamental relevance 
to the physics of interfaces but, again, may lead 
to improved technology in the areas of crystal 
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growth and foundry practice. 
Unfortunately, in contrast to the case of 

liquid-vapour energies for example, the e tperi- 
mental measurement of solid-liquid energ!es is 
not at all easy even for pure materials; it is even 
more difficult to accomplish for multi-component 
systems, and, consequently, lamentably little 
progress has been made in this latter area. As 
will be shown later, there are several problems to 
be overcome before we can use theoretical 
models of the solid-liquid interface to obtain 
reliable, calculated values of 7sL even for simple 
systems. Fortunately, however, much attention 
has lately been aimed at devising experimental 
techniques designed to overcome the practical 
difficulties inherent in making interfacial energy 
measurements. Accordingly, it is pertinent first 
of all to review these methods and to discuss the 
energy values derived from them. 

2. Experimental measurements of solid- 
liquid energies 

Before turning to the detailed techniques of 
measuring ~'sL it is necessary to make some 
important general remarks concerning experi- 
mental values of interfacial energy. First, there 
is every reason to suppose that the structure of 
a moving solid-liquid interface, and hence its 
energy, depends on the interracial velocity V~. 
Thus in order to determine the value of 7s5 
appropriate to any process (for example den- 
dritic growth) we should conduct experiments 
using interfaces having the correct velocities, or 
else know ~'SL (Vi) over a sufficiently large range 
of velocity. 
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Secondly, ySL may depend on the dimensions 
of the solid-liquid system if these are less than 
0.01 ~tm [9-15]. Care must therefore be taken 
not to extrapolate ysz from the macroscopic to 
the microscopic regimes and vice versa unless the 
size dependence of ys~ is known. Also important 
in this context is the probable influence on ysL 
of the forces emanating from surfaces or other 
interfaces sufficiently near to the solid-liquid 
interface; in certain materials this effect may be 
important for surfaces as far away as 1 gm from 
the solid-liquid interface [16]. 

Thirdly, the presence of minute amounts of 
impurity in a solid-liquid system will allow one or 
more adsorbed layers to form on the solid- 
liquid interface, with a consequent reduction in 
ySL. Fortunately, it should still be possible to 
reproduce measurements of ysT, for any material; 
for usually all adsorbable impurities will be 
present in sufficient quantity that the degree of 
adsorption (and thus ysT,) will not change 
appreciably with variations in impurity con- 
centration from one specimen to another. It 
will, of course, be almost impossible ever to 
measure ysL for perfectly pure systems, but this 
is unlikely to be a practical disadvantage. 

2.1. Direct application of the Gibbs- 
Thomson equation 

The most powerful methods at present available 
for measuring ysL experimentally make direct 
use of the so-called Gibbs-Thomson equation. 
This thermodynamic result shows that, if all 
other intensive variables (such as composition, 
pressure and strain energy) remain constant, a 
solid bounded by an element of interface having 
principal radii of curvature r~ and r~ measured 
in the solid will be in equilibrium with its melt at 
a temperature Tr which is not equal to the phase 
diagram liquidus temperature Tin. The expression 
may be written as 

(1 1) 
rim -- Tr ---- A T  = ysL + 

esi (&i-  &)' (1) 

where 17si, SLi and ~si are the partial molar 
values with respect to the ith component of the 
volume of the solid, the entropy of the liquid, 
and the entropy of the solid, ys5 refers to the 
small interfacial element. In the case of a pure 
system having isotropic ysL, Equation i reduces 
to 

1 1 ) T i n  
Tm - T r =  A T = r s L  ~ + 7 =  L--p~' (2) 

where L is the latent heat of fusion per unit mass, 
ps is the density of the solid phase, and the 
equation applies to an extended (non-elemental) 
interface. Thus, if the appropriate physical 
constants are known, measurements of A T  
for known values of rl and r2 for a system at 
"equilibrium" will yield values of ysL directly. 

There are nevertheless several practical diffi- 
culties associated with using the Gibbs-Thomson 
equation. First, a single crystal of solid surroun- 
ded by its melt at the equilibrium temperature is 
in a condition of highly unstable equilibrium; a 
small fluctuation will lead either to complete 
melting or complete solidification, and the 
practical attainment of "equilibrium" is thus 
difficult. For systems where rl, r 2 ~ 0.1 gm, 
A T  is sufficiently large (say 1 to 30 K) that 

it can be measured easily, and consequently a 
careful control over the intensive variables (for 
example impurity concentration and strain 
energy) is not usually important. However, 
surface forces (emanating from a container for 
instance) may affect ysL seriously. The reverse 
situation holds for rl, r 2 ~ 1 gin; surface forces 
are usually not important, but because A T  is 
only about 0.1 K or less an exceptionally high 
degree of control is required over temperature 
and solute concentration for example. 

In the next section we shall discuss the 
attempts, many of them very ingenious, which 
have been made to overcome these difficulties. 

2.1.1. The absolute determination of 
"equilibrium" temperatures 

(a) Skapski '  s method 
The first really successful attempts at measuring 
ysL directly from the Gibbs-Thomson equation, 
following on from the pioneering but somewhat 
equivocal work of Meissner [17], were by 
Skapski and his colleagues [18-20]. These 
authors measured ysL for myristic, stearic and 
laurie acids, and for benzene and ice-water. 
Using a Beckmann thermometer A T  was 
measured for systems held at temperatures of 
0.02 zk 0.002 to 0.8 ~ 0.002 K below Tin. Fig. la 
shows the elegant wedge-like geometry employed 
in the case of the acids for achieving "equili- 
brium" conditions and observing the interfacial 
curvatures in the transparent systems. Notice 
that the system is stable with respect to small 
fluctuations in temperature; if for example the 
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Figure 1 The arrangements devised by Skapski and his 
colleagues for measuring the curvatures of pure solid- 
liquid interfaces at various temperatures. 

temperature decreases, the solid will grow so as 
to increase the curvature of the solid-liquid 
interface which, by Equation 1, restores equilib- 
rium. A similar argument applies to small 
increases in temperature. The presence of the 
liquid-vapour meniscus causes the solid-liquid 
system to be at a pressure of less than one 
atmosphere; this leads to a related change in 
Tm which, fortunately in the case of the acids, is 
small [18]. In order to eliminate meniscus effects, 
Skapski devised an even more elegant arrange- 
ment employing a tapering capillary (see Fig. 
lb). This apparatus also allowed rl and r 2 to be 
measured directly rather than, as in the earlier 
experiment, having to assume a cylindrical 
interface and having to measure separately the 
contact angle between the solid-liquid interface 
and the container. The modified arrangement was 
used for the work on ice-water and benzene and 
was also employed to check the earlier work on 
lauric and stearic acids. 

The interracial energy values obtained by 
Skapski et al arc given in Table I. It was found, 
from experiments using the wedge technique, that 
ysr~ for stearic acid was anisotropic to about 
30 ~ .  In the capillary experiments, on the other 
hand, the solid-liquid interfaces were reported 

to be hemispherical, implying that ysL is 
isotropic for ice-water, benzene, and lauric and 
stearic acids (see Section 3). The apparent con- 
tradiction in the case of stearic acid probably 
indicates that we should not take too seriously 
the statement regarding the equilibrium forms 
of the crystals in the capillaries. 

In order to achieve a reasonable accuracy it 
was found important, as expected, to use very 
pure materials and to avoid generating strain 
fields in the solid crystals. In the cases of 
benzene and ice-water (and presumably in the 
other capillary experiments) 7sL was found to be 
independent of whether very slow melting or 
freezing took place at the interface. This indi- 
cates that, provided the only possible kinetic 
effects are due to the flow of latent heat and 
solute, or to the driving forces required for 
interfacial motion, such effects are negligible; 
this is because the magnitudes of these pheno- 
mena change sign as Vi changes sign. If, how- 
ever, ysL for the "melting" interface is not the 
same as that for the "freezing" interface the 
situation is more complex as the kinetic effects 
may cancel out the energetic effects. Turning to 
the wedge experiments, ?,sL was measured only 
for interfaces at which slow melting took place 
(at a rate of c. 0.5 gm sec-1). In this case the 
determination of 7s~ must neglect kinetic 
effects. Fortunately these need not be large 
because (a) the thermal resistivity of the system is 
low, and (b) the driving forces for melting are 
probably small - as in most materials - because 
of the abundance of defects at the surfaces of 
melting crystals. 

An interesting feature of the work is the 
independence of 7s5 on the proximity of the 
container to the solid-liquid interface over a 
range of distances of 0.2 to 5 gin; this supports 
the earlier comments on the absence of surface- 
force effects for large enough systems. 

In spite of the attractiveness of Skapski's 
method it is not suitable for handling impure 
systems. The technique is in principle applicable 
to pure metals but the associated practical 
problems are likely to be severe. 

(b) Mikseh's experiment 
The effect of increasing the pressure acting on an 
ice-water system is to lower the temperature at 
which the two phases are in equilibrium. This 
principle has been used by Miksch [21 ] inworkon 
the ice-water temperature standard. The experi- 
mental arrangement consisted of two ice-water 
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T A B L E  I 

Substance Nucleus-melt 7,sL (mJ m -S) Anisot ropy of  
energies (mJ m -2) ?sL ( ~ )  

Direct values near  Indirect values 
equilibrium 

near  non-  
equilibrium equilibrium 

Ice-water* 26.1 [54, 22] 44 • 10, C [19] 25 [66] 25 to 42 [75] Small [4, 23, 46] 
24.2 [55, 60] 44 4- 10, GBG [36] (interfacial 20 4- 2, D G  [4] 

45 4- 15, D A C  perturbation) 
(see p. 10) 
46 (see p. 5) 

Benzene > 19.8 [91, 22] 44 4- 10, GBG [36] - -  - -  5 [36] 
22 4- 2, C [20] 

White > 10.7 [91, 22] 12 4- 2, GBG [36] - -  0.93 ~ 0.05, Negligible [34] 
phosphorus  D G  [71] 

0.7, D G  [73] 

Naphthalene > 27.2 [91, 22] 61 4- 11, GBG [36] - -  - -  20 [361 
69, D M P  [25] 

Carbon > 10 to > 20 10 to 20, GBG [36] - -  - -  0 to 6 [36] 
te t rabromide [91, 22] 

Diphenyl > 24 [91, 22] 50 4- 10, GBG [36] - -  - -  20 [36] 

Succinonitrile - -  28 4- 4, GBG [36] - -  - -  l Negligible 

Camphene  - -  6 4- 1, GBG [36] - -  - -  ; [34] 

Ethylene > 19.5 [91, 22] 35 4- 7, G B G  [36] - -  - -  0 to 15 [36] 
dibromide 

Bismuth > 54.4 [53] 55 to 80, D M P  [12] 74 4- 3, GBE - -  Small? (see p. 14) 
[49] 

Tin > 59 [see 51] 62 • 10, D M P  [13] - -  - -  - -  

Gold  > 132 [59] 270 4- 10, D M P  [14] - -  - -  - -  

Lead > 52 to > 63 40 • 7, D M P  [15] - -  - -  Small (see p. 14) 
[87, 1] 

Stearic acid - -  135 to 180, W [18] - -  - -  30 [18] 
180 • 10, C [19] 

Lauric acid - -  100 4- 15, W [19] 
99 4- 5, C [19] 

Myristic acid - -  116 4- 10, W [18] 

*ysL increases approximately linearly as sodium chloride is added to the melt in the range 0 to 1 tool kg -1 [36]; for 
a melt concentrat ion of  1 mol kg -1 ),sL is found to be 58 4- 15 mJ  m -~ [36]. 
C = conical capillary, GBG = grain-boundary groove shapes, D A C  = dihedral angles and contact  angle, D G  = 
dendrit ic growth, D M P  = depression of  melting point,  GBE = f rom calculated energy o f  grain boundary and measured 
dihedral angle, W = wedge method.  
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(a) ICE GRAINS 
SYSTEM 2 / 
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ICE G ~  
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Figure 2 (a) Section taken through the ice-water systems 
in Miksch's experiment; (b) view of the polycrystalline 
ice layers in a direction perpendicular to the axis of the 
cylindrical glass wall. The dotted lines indicate the posi- 
tions that would be adopted by the ice-water interfaces 
were the system temperatures to decrease. 

systems (Fig. 2a) at a common temperature but 
subjected to different pressures. In each system 
the ice was in the form of a polycrystalline layer 
one crystal thick deposited on glass. During the 
experiments it was found that, in order to 
maintain "equilibrium" in each system, a 
pressure difference (equivalent to a temperature 
difference of 2.9 • 10 -5 K) was required between 
the systems; this was attributed to the systems 
having different grain sizes (c. 2 and 3 mm 
respectively) and hence different interracial 
curvatures. 

Although Miksch did not measure the 
interfacial radii these have been estimated from 
the grain sizes by the present author [22]. This 
derivation used the information that, for ice- 
water, (a) ysL is isotropic (see Table I), (b) the 
dihedral angle at the intersection of the solid- 
liquid interface with a high-angle grain boundary 
is about 30 ~ when measured in the liquid [23, 
24], (c) the angle of contact of the solid-liquid 
interface with glass is 0 ~ measured in the liquid 
[19]. The structure of the ice layers consistent 
with these data is shown in Fig. 2b. A resulting 
figure for ~'SL of about 46 m J m -2 was obtained 
[22] from the analysis. This value is in excellent 

agreement with the other direct figures for ice- 
water (Table I) although the agreement may be 
somewhat fortuitous in view of the uncertainty 
in the measured grain sizes. Nevertheless, the 
present result is quoted because of a unique 
feature of the method - the extremely low inter- 
facial velocities encountered (nominally as small 
as 0.01 molecular diameters a second for both 
melting and freezing). It is unlikely that a much 
closer approach to equilibrium can ever be 
attained in practice, and it would be of con- 
siderable interest to repeat the experiments 
making more careful measurements of grain 
size. 

It should be noted that the ice layers in system 
2 (but not in system 1) are somewhat unstable; if 
the temperature decreases, for example, growth 
will occur so as to cause a further departure 
from equilibrium (Fig. 2a). The exceptionally 
low Vi were achieved by having very steady 
temperatures (provided by an ice-water bath) 
and by adjusting the pressures over many 
days. It thus seems unlikely that this technique 
can be applied to substances other than very 
pure water. 

(c) The melting points of small crystals 
If a small, isolated crystal is heated, melting 
should begin at the crystal-vapour interface and 
the crystal should become surrounded by a thin 
shell of liquid provided the crystal size is initially 

1 nm [12]. At first the liquid skin will be too 
thin for the liquid to be thought of as having the 
properties of the bulk phase; but when the skin 
has achieved a critical thickness, t, the Gibbs- 
Thomson equation may be used to derive a 
relationship between rl, r2 and Tr under equilib- 
rium conditions. In this connection Tm must be 
corrected to allow for the pressure exerted by the 
liquid meniscus, and the solid must be large 
enough to have its bulk properties. If there is no 
energy barrier to the formation of a liquid shell 
of critical thickness at Tr, a final equation may 
readily be obtained to describe the melting 
temperature of a pure spherical crystal in terms 
of its initial radius R, with the two adjustable 
parameters ysL (assumed isotropic) and t. The 
expression may be written as [13] 

2Tin I 7SL 
T m -  = --L-- ps  (R  - t)  

1)} 
+ - g  ' (3) 
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where 7Lv is the liquid-vapour surface tension, 
and pL is the density of the liquid. If, on the other 
hand, there is an energy barrier to the formation 
of the liquid shell at Tr, Equation 3 must be 
replaced by a more complex relation involving 
an additional adjustable parameter A 7 (given 
by 7sv - 7sT, - 7T,v, where 7sv is the solid- 
vapour surface tension) [12]. The appropriate 
equation characterizing a set of experimental 
AT(R) data for a suitable material is that which 

gives the best fit between theory and experiment. 
Clearly, by fitting the appropriate equation to 
the AT(R) data either 7sL and t, or 7sL, t and 
A 7 may be found. 

Experimental studies of the melting-point 
depressions of small crystals have been made by 
the group at Imperial College for tin [13], 
bismuth [12], gold [14] and lead [15], and by 
Kanig [25] for naphthalene. In the experiments 
on the metals and bismuth small crystals 
(usually 10 to 100 nm in size) were formed on 
carbon [12-15] or silicon monoxide [12, 13, 15] 
substrates by vapour deposition in vacuo. The 
onset of melting was detected either by electron 
diffraction (for tin, bismuth and lead) or by 
measuring changes in the rate of evaporation 
(for gold). Crystal sizes were measured by 
electron microscopy. Since the melting point 
depressions encountered were usually between 
10 and 200 K they were readily measurable by 
direct thermometry. 

It was found that Equation 3 was appropriate 
to the AT(R) data for the metals, but not for 
bismuth. In the former instance it was possible 
to determine quite accurate values for 7s~ 
(Table I); but in the case of bismuth it was found 
that the alternative equation gave the best fit and, 
not surprisingly with three adjustable parameters, 
the accuracy achieved in 7SL was somewhat 
poorer (Table I). 

In the work on tin, bismuth and lead no 
contamination of the material could be detected 
from the nature of the diffraction patterns, but 
this need not mean that the systems were more 
than moderately clean. In the studies on lead 
and bismuth, the introduction of hydrogen was 
found to have no effect, indicating little oxida- 
tion. For tin, bismuth and lead no difference in 
behaviour was found with the two substrate 
materials used; but this does not constitute proof 
that the presence of a substrate does not lead to 
melting by a mechanism other than uniform 
surface melting. The assumption of the latter 
mode of melting in the theory seems to be the 

primary source of uncertainty in the method. It 
thus seems important either to make a theoretical 
investigation of possible modes of melting on a 
substrate, or to use substrates of quite different 
characters; the latter might also help to indicate 
whether or not forces emanating from the 
substrate affect ~sL. The apparent independence 
of energy on particle radius does not necessarily 
show that 7sT. is independent of interfacial 
curvature because size effects due to curvature 
and surface forces may act in opposition. 

It is important in work of this type to conduct 
an independent verification of the isotropy of 
7SL. Among the materials studied above this 
has been achieved for lead and possibly bismuth 
(Table I). In the case of naphthalene, however, 
7SL has a 20 ~ anisotropy (Table I); this may 
explain why Kanig's value is a little higher than 
a somewhat more direct figure for this substance 
(Table I). 

A related method of measuring ),sL has been 
indicated by Kubelka and Prokscha [26]. These 
authors measured the depressions of the melting 
points of ice, and solid benzene and ethylene 
dibromide, adsorbed in porous media such as 
silica gel.  The geometry assumed for the 
equilibrium configuration of the adsorbed 
material when partly molten is shown in Fig. 3, 
the pores containing the adsorbate being taken 
to be cylindrical. In this case A T  and R may be 
related by Equation 3 provided that t is set equal 
to zero, and that the + sign is changed to a 

- sign to allow for the change in sign of the 
pressure exerted by the liquid meniscus [26]. 

. . . . .  . , '  

"".:i ) ' vAooun [-i? ~: 

Figure 3 The assumed configuration, at "equilibrium", 
of a pure solid-liquid system adsorbed in a pore. 
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During the experiments the melting of the 
adsorbed solid was detected by observing 
changes in the vapour pressure of the adsorbate 
with temperature. The pore radii were found 
indirectly by measuring the vapour pressure of 
the adsorbed liquid and applying the Kelvin 
relation. Typical values of R and AT were 10 
nm and 10 K. Similar experiments were sub- 
sequently carried out by Purl and colleagues 
[27, 28]. Only in the earlier work [26] was ~,sL 
evaluated from the experimental data. The 
present author [22] has recalculated the value for 
benzene from these data and has also analysed 
the results of the later work. However, the 
values obtained are not quoted here in view of 
the following reasons for thinking the technique 
to be unsound. (a) The values of 7s~ for a given 
material are sometimes inconsistent from one 
experiment to another. (b) The values of R 
may be in error; it has been reported that liquids 
in capillaries closed at one end have abnormally 
low vapour pressures [2%31]. (c) The effect of 
surface forces on material adsorbed in a 
capillary is probably very large [32]. 

2.1.2. The relative determination of 
"equilibrium" temperatures 

(a) The shapes of grain-boundary grooves in a 
temperature gradient 
Probably the most attractive method of 
measuring 7SL directly for macroscopic systems 
involves observing the "equilibrium" shapes of 
grooves formed by the intersection of planar 
grain boundaries with an otherwise planar 
solid-liquid interface in a system subjected to a 
temperature gradient. The technique is especially 
convenient because it does not require a high 
degree of temperature control and measurement, 
and because it allows 7SL to be determined not 
only for pure materials, but also for multi- 
component systems. 

The geometry required of the grain-boundary 
groove is shown in Fig. 4. At a large distance 
away from the grain boundary the solid-liquid 
interface is planar and consequently is at a 
temperature Tin. On going towards the root of 
the groove the curvature of the interface in the 
x-y plane increases so as to balance the decreasing 
interfacial temperature according to the Gibbs- 
Thomson equation. The equilibrium shape of 
the groove has been calculated theoretically for 
the case of isotropic 7sL [6, 33] in terms of 
7sL, the thermal conductivities of liquid and 
solid (Ks and KL), (SLi --  Ss i ) /Vs i ,  and the 

HOT ISOTHERM 

IY  LIQUID 

4::OLD I S O T H E R M - -  

Figure 4 Schematic illustration of a grain-boundary 
groove formed at a solid-liquid interface in a temperature 
gradient. The groove shape is independent of the z 
co-ordinate. 

temperature gradient in either liquid or solid; 
thus if groove shapes can be measured in known 
temperature gradients, 7s~ can be found 
directly. The method holds for impure systems 
[34, 35], because if Vi is small enough the solute 
concentration in the melt is constant and 
independent of Tr (as required by Equations 1 
and 2). 

-- /~ MICROSCOPE 
OBJECTIVE 

GRAIN ! LENS 
BOUND\ ARY ~ THERMOCOUPLE 

LIGHT O-25r~m SOURCE 
~ARAL DiTE' GLUE 

Figure 5 Experimental arrangement employed by the 
author for observing grain-boundary grooves in trans- 
parent materials. 

In the first really successful application of the 
method Xs~ was measured for a range of trans- 
parent organic materials, and for white phos- 
phorus, ice-water, and ice-water-sodium chloride 
systems [36]. The experimental arrangement 
employed in the work is shown in Fig. 5. The 
specimen systems were held in glass-walled cells 
and the required temperature gradient was 
generated by mounting the cells in a suitable 
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Figure 6 A typical micrograph of a grain-boundary 
groove in a transparent material (in this case camphene). 
• 318. 

heating stage. The stage was attached to an 
optical microscope, allowing the cross-section 
of the "equilibrated" grain-boundary grooves 
to be observed in transmitted light [22, 34, 35, 
37]. A typical micrograph of a grain-boundary 
groove is shown in Fig. 6. 

The interfacial energies obtained from the 
latter studies are given in Table I. In all materials 
other than benzene these energies agree very 
well with the figures derived by other direct 
methods. The discrepancy in the case of benzene 
is puzzling, however, particularly as the author's 
value is exactly twice that derived using the 
capillary method. In most cases )'s5 was 
measured for grooves that were "stationary" 
and also for grooves at which both melting and 
freezing took place (at rates of up to about 0.5 
gm scc-1); but no dependence of )'sL on Vj was 
observed. )'sL was found to depend linearly on 
salt concentration in the ice-water-sodium 
chloride system (Table I). On the other hand, 
although the concentration of impurities varied 
from 0 to 2 mol ~ in diphenyl, carbon tetra- 
bromide and benzene, no variation of 7s~ with 
impurity content was detected in these chemicals. 
The assumption of isotropic 7sL was verified (by 
conducting subsidiary experiments) for most of 
the materials studied (Table I). 

As derived, the groove shape theory applies 
to the experimental geometry shown in Fig. 7, 
where the flow of heat through the specimen is 
entirely uniaxial except near the groove. In the 
work on the transparent materials the dimensions 
and thermal conductivities of both container and 

specimen were comparable and it was necessary 
to modify the theory [36] to take into account 
the non-axial heat flow pattern. 

The only other material for which )'sL has 
been determined by the groove-shape method 
is lead [33, 38]. The experimental arrangement 
employed [38] is shown in Fig. 7. In order to 
observe the groove shapes a small amount of 
antimony was rejected into the molten lead 
ahead of the solid-liquid interface. After 
allowing time for equilibration the specimen was 
quenched and sectioned. The antimony-rich 
area was detected by etching, and the shapes of 
the grooves were taken to be those of the lines 
dividing the pure lead from the impure lead. 

The value obtained for the solid-liquid energy 
of lead is not quoted here, however, because the 
treatment of the results by Nash and Glicksman 
[33] (who only studied one groove shape) was 
only intended as a demonstration of their 
method of analysis; it was not meant to provide 
a valid figure for )'sL. This restriction apart, it is 
somewhat unlikely that the shapes observed in 
the quenched specimens [38] represent the true 
equilibrium shapes of the grooves. In view of 
the large sizes of the specimens it would have 
been likely that, during the quench, the solid- 
liquid interface would have moved some distance 
before fresh solid nucleated and grew ahead of 
the interface; and during this process the shape 
of the groove would have been distorted signi- 
ficantly by the quickly changing heat-flow 
pattern and by the rapid rejection of solute. It 
might have been possible to gain an idea of the 
effect by comparing groove shapes obtained 
from the specimen surface with those obtained 
from the centre of the specimen; but this does 
not seem to have been attempted. In any event, 
it is highly desirable to make direct observations 
of grooves in order that (a) the approach to 
equilibrium of the groove shape can be followed, 
and (b) the interfacial energies may be measured 
as a function of interracial velocity. 

In conclusion, it should prove relatively easy 
to apply the author's thin specimen technique to 
the study of metallic systems. Groove shapes in 
the latter may, for example, be observed in 
principle by using X-ray, ultra-violet or infra-red 
methods. Although these techniques have not 
yet been applied to studying equilibrated grain- 
boundary grooves, their suitability for such 
studies is apparent from other work on solid- 
liquid systems [39-41]. Thus the application of 
the method to the direct measurement of inter- 
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facial energies in metals and alloys should prove 
very fruitful. 

(a) 

(b) Liquid inclusions stationary in a temperature 
gradient 
We shall now indicate a new method of 
measuring 7sz that has many of the advantages of 
the groove-shape technique, but which may give 
more satisfactory results at extremely high levels 
of solute concentration; in fact the technique 
can be applied only to impure systems. At a 
sufficiently high temperature an impure solid 
will usually contain a large number of small 
droplets (c. 1 to 100 pm in size) of impure, 
segregated liquid. If a temperature gradient G 
is imposed on the solid these droplets will 
migrate up the temperature gradient by a com- 
bination of dissolution and solidification at the 
high- and low-temperature interfaces respec- 
tively, and solute flow across the droplet [7]. It 
is often possible, however, to observe droplets 
that have become immobilized even though 
subjected to a temperature gradient. This may be 
caused by the interaction of the droplet with a 
grain boundary perpendicular to the temperature 
gradient [42] as shown in Fig. 8a; alternatively, 
in systems where dissolution requires crystal 
defects (such as screw dislocations) droplets may 
be immobilized as a consequence of the lack of a 
suitable defect at the high-temperature interface 
[43, 44] (Fig. 8b). 

d 

Figure 7 Experimental arrangement employed for generating grain-boundary grooves in lead. 

~G 

\ \ \ \ \ \ \ \ \  

Figure 8 Schematic illustrations of impure liquid droplets 
immobilized in a solid subjected to a temperature 
gradient G. 

When the solid-liquid interfaces not affected 
by the immobilization processes (labelled 1-m-n 
in the figures) have reached equilibrium their 
shapes may again be described by the Gibbs- 
Thomson equation; this is because the solute 
concentration in the stationary droplet must be 
quite uniform. Thus appropriate figures may, in 
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Figure 9 Schematic arrangements at three-phase junc- 
tions. 

principle, be obtained for yss. Clearly the 
analysis of droplet shapes will be most con- 
venient for systems having Ks = KL (allowing 
the thermal distribution at the interface to be 
calculated easily) and having simple droplet 
geometries. 

2.2. Equilibria at three-phase junctions 
When a grain boundary intersects a solid-liquid 
interface (Fig. 9a) the condition for equilibrium 
at the three-phase junction is 

YaB = 2ySr, COS (0S•/2), (4a) 

where yc~ is the grain-boundary energy. 
Similarly, for the solid-vapour case (Fig. 9b), 

yC-B ---- 2ysv cos (0sv/2). (4b) 

For "equilibrium" at the edge of a liquid drop 
that has recently been placed on a soft, solid 
surface, as shown in Fig. 9c, we have 

ysv = 7st, + yt,v cos r (4c) 

where r is the contact angle. The above equations 
all assume that the interphase energies are iso- 
tropic. 

If  we consider only high-angle grain boun- 
daries then, for any suitable, pure material, we 
may combine Equations 4 to find ysL provided 
0sL, 0sv, r and yLv are known. This principle 
has been used by Ketcham and Hobbs to measure 
ysL for ice-water [23]. A value of 33 =k 3 mJ 

10 

m -2 was determined, it being concluded that the 
anisotropy of the interphase energies was small. 
The latter observation is in agreement with the 
results of other work on this system (Table I). 

The value of the ice-water energy measured by 
the Ketcham and Hobbs technique is, however, 
particularly sensitive to the measured value of 
0sv. Suzuki and Kuroiwa [45] have recently 
shown that the real values of this angle are 
probably 6 ~ • 3 ~ less than those measured via a 
replica technique by Ketcham and Hobbs 
because the replicating solution used by the 
latter workers attacks ice. An appropriate 
correction to the angles measured by Ketcham 
and Hobbs yields a value for ys~ of 45 • 15 mJ 
m -2, in excellent agreement with all other direct 
values measured for the ice-water interface at 
equilibrium (Table I). The value for the contact 
angle of 1 ~ measured by Ketcham and Hobbs has 
recently been questioned by Knight [46] who 
estimated that this quantity might be as large as 
10~ but, fortunately, 7sL is insensitive to varia- 
tions in contact angle of between 0 ~ and 20 ~ 

The technique does not appear to have been 
applied to any other pure materials, but has 
been used for highly dissimilar phases such as 
solid copper and liquid lead. However, in such 
cases the method is not necessarily valid. When 
measuring 0sv both the grain boundary and 
solid surface are pure; but when determining 0SL 
the grain boundary is often highly contaminated 
by the liquid phase, and yGB cannot always be 
eliminated from the equations as is necessary. 
In the sessile drop experiment for measuring r 
the drop material must often contaminate the 
solid surface, and thus neither can ysv neces- 
sarily be assumed constant from one equation 
to another. In view of these obvious pitfalls we 
shall not refer again to any experimental studies 
involving the use of sessile-drop techniques in 
multi-component systems. 

A somewhat related, but less direct, method of 
measuring interfacial energy has been described 
by Glicksman and his co-workers [47-49]. In 
this work measurements were made of the 
dihedral angles formed by the intersection of 
low-angle, symmetrical-tilt grain boundaries 
with a solid-liquid interface in pure bismuth. The 
specimens were present as thin layers, the experi- 
mental and thermal configurations being closely 
analogous to those shown in Fig. 5; but the 
groove shapes were observed in the electron 
microscope and the temperature gradient desira- 
ble for stability of the groove was generated by 
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electron-beam heating of the liquid. The mis- 
orientations across the grain boundaries were 
measured in situ by diffraction techniques, and 
the energies of the boundaries were determined 
from the Read-Shockley formula together with 
the known elastic constants for bismuth. ~'sL 
was found from the calculated values of yaB 
by balancing surface tensions at each groove 
(Equation 4a) and was shown to be 74 4- 3 
mJ m -~. This value agrees favourably with that 
obtained by Coombes [12] from melting point 
data (see Table I). It should be noted that the 
Read-Shockley formula is not completely valid 
in the above experimental situation [47]; 
unfortunately, the error so resulting in the 
present value of ~'sL does not yet appear to be 
calculable [47]. In addition, the present calcula- 
tion of yGB, and hence that of ysL, can only be 
made for a clean system; the value of ~'sL 
computed by this method is therefore not 
necessarily applicable to a real (contaminated) 
system. Another possible error may stem from 
the fact that the dihedral angles were measured 
for solid-liquid interfaces less than about 0.05 
gm apart. The measured angle may have been 
affected by surface forces emanating from the 
interfaces; and this could be important in view 
of the large values of 0s~, and consequent 
sensitivity of the measured interfacial energy to 
the observed geometry. In general there may be 
difficulties in applying this technique to materials 
other than bismuth; certainly the method would 
be most awkward to use in the case of impure 
systems because of the difficulty of calculating 
the grain-boundary energy with sufficient 
accuracy. 

Before leaving the subject of surface-tension 
equilibria, it is worth pointing out the usefulness 
of these phenomena in determining other inter- 
phase energies from a knowledge of ~'sL. 
Clearly, if ~'sL is known, the measurement of 
0sL in any material, pure or impure, will yield 
experimental values of YGB. As an example for a 
pure system, we may compute a revised value 
of 84 4- 20 mJ m -2 for the energy of a high- 
angle grain boundary in ice from the modified 
data mentioned above. In the case of impure 
materials, OSL can be measured very easily [8], 
and it should prove possible to determine ~'GB 
for such systems by measuring ~'sL via the 
groove-shape technique. Similar methods should 
also allow the determination of solid-state 
interphase energies in both eutectic and non- 
eutectic systems. With regard to pure materials, 

the sessile drop technique permits the determina- 
tion of ysv from ysL and vice versa. By way of 
example we may derive a revised value for the 
ice-vapour energy of 120 4- 10 mJ m -2 from 
the relevant data. Finally, it is noteworthy that 
accurate values have recently been determined 
for solid-vapour energies (as in the work at 
Imperial College on the vapour pressures of 
small crystals) and thus the sessile drop method 
should afford a useful means of corroborating 
experimental figures for ~'sv and ~'s~ in the case 
of pure materials. 

2.3. Crystal nucleation 
Until recently almost all experimental values of 
~'sL were obtained from experiments involving 
the supposed homogeneous nucleation of solid 
from an undercooled melt. The results were 
analysed according to the theory of homogeneous 
nucleation developed by Turnbull and Fisher 
[50], and nucleus-melt energies were obtained 
for a wide range of metals, metalloids, and 
organic and inorganic substances (see the reviews 
by Holloman and Turnbull [51] and Jackson 
[52] for example). 

There are, nonetheless, several problems 
associated with this technique. First, only in 
mercury [53] and ice-water [see, for example, 
refs. 54 and 55] has the assumption of homo- 
geneous nucleation been verified experimentally. 
In the absence of such verification the values of 
'/sL obtained can only be taken to be minima. 
Indeed, in several cases [1, 51, 56, 57], the 
undercoolings required to cause nucleation 
have been found to be substantially larger than 
those reported by earlier workers [58, 59], 
indicating heterogeneous nucleation in the earlier 
studies. 

Secondly, a difficulty in interpreting the results 
arises from the fact that the free energy of forma- 
tion of the solid nucleus may vary in a complex 
manner with temperature. A correct expression 
for deriving the energy of formation has recently 
been formulated by the author [22, 60], rendering 
the theory of nucleation thermodynamically 
self-consistent. Using this expression the values 
of ysL obtained from the simple theory [50] need 
to be decreased by up to 15~ for non-metals, 
but by only c. 1 ~ for most metals. 

Thirdly, it has been suggested [1] that a 
quantum-mechanical, correction term should be 
included in the nucleation rate equation. In the 
case of metals, organic compounds, and ice- 
water this term implies that FsL values derived 
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from simple theory should be increased by 0 to 
7 ~  to arrive at the correct values [1, 22]; but 
it does not seem possible to specify the extent of 
the correction more closely than this. 

A further difficulty arises fro:,a the fact that, in 
nucleation experiments, YsL is determined at 
temperatures as much as 200 K below Tin. Thus 
nucleus-melt energies cannot be equated to 
macroscopic energies without information on 
the temperature coefficient of interfacial energy 
(at the present unknown). 

Finally, there are the well-known uncertainties 
inherent in applying macroscopic thermo- 
dynamics to systems as small as the solid nucleus 
(typically c. ! n m  in size). In this context, if the 
solid-liquid interface is at all diffuse, values of 
?'sT, measured in nucleation may be significantly 
less than those measured for macroscopic 
interfaces [61 ]. 

Values of nucleus-melt energies, corrected as 
indicated above, are listed in Table I for those 
substances for which other values of ys~ are 
known. As is clear from the table, the direct 
figures for ys5 for systems at equilibrium are 
almost invariably much greater than the cor- 
rected nucleus-melt energies; but this need not 
necessarily support the diffuse interface hypo- 
thesis. It should be mentioned that the tabulated 
nucleus-melt energies have been calculated 
assuming the solid nucleus to be roughly 
spherical. With regard to ice-water, some workers 
have assumed that the nucleus is a hexagonal 
prism [see, for example, 62-64]; but this assump- 
tion seems quite ill-founded simply because the 
energies associated with the edges of such a body 
would almost certainly be far too high relative 
to the face energies to allow it to exist. Because 
of this and other differences of interpretation of 
the data for ice-water the values of the nucleus- 
melt energy in the literature are not always in 
mutual agreement (see the discussion by the 
present author [22]). The values tabulated for 
the nucleus-melt energy of ice-water are the most 
accurate at present available. 

In conclusion, although the nucleation tech- 
nique is not suitable for measuring macroscopic 
solid-liquid energies, it may well provide 
information on the structures of crystal-melt 
interfaces in pure materials. In contrast, the 
interpretation of data on impure systems [65] is 
likely to be too complex to be of immediate 
value. 

12 

2.4. Crystal growth 
2.4.1. Shape instability of a solid-liquid 

interface during solidification 
As is well known, in many materials the solid- 
liquid interface adopts a smooth, non-faceted 
form (free of small hummocks) during slow 
growth from the melt. This mode of solidifica- 
tion is usually referred to as "planar" growth. 
If, however, the velocity of growth is increased 
sufficiently this morphology becomes unstable 
and small protrusions form at the solid-liquid 
interface. The probability of such protrusions 
forming is governed partly by ySL since, clearly, 
their existence results in a higher interfacial area 
and a consequent increase in the energy of the 
system. If suitable measurements are made of the 
formation of interfacial protrusions, the data 
may be analysed according to the Mullins- 
Sekerka theory of interfacial instability, yielding 
}'SL. 

This principle has been employed by Hardy 
and Co.riell to measure ySL for ice-water [4, 66, 
68], and for the interfaces between ice and 
various dilute aqueous solutions [66, 67]. Direct 
observations were made of interfacial mor- 
phology during the slow radial growth (at c. 0.1 
lain sec -1) of ice cylinders having axes parallel 
to the c-axis of ice. After successive refinements 
of the technique (during which the resulting 
value of ys5 rose step-by-step from an initial 
value of 16 mJ m-2), a final figure of 25 mJ m -2 
was obtained for pure ice-water. In addition, 
quantitative proof was found that the aniso- 
tropy of ysL is small [4]. With the slightly 
impure systems ysL was normally about 1 or 2 
mJ m -~ different from the value for pure ice- 
water; but measurements were not made over 
sufficiently large ranges of solute concentration 
for the concentration dependences of ),si~ to be 
measured accurately. It is surprising to see that 
the value obtained with the technique is almost 
half that derived by the direct methods (see Table 
I) even though Vi is small. This may well 
indicate a basic problem in the application of 
the Mullins-Sekerka theory to experiments of 
the present type [69]. 

In conclusion the method can, in principle, be 
extended to opaque systems as in these cases the 
propagation of interfacial instabilities may be 
observed by using ultra-sonic techniques. How- 
ever, the latter may not be well suited to 
quantitative work because of the associated 
generation of energy at the solid-liquid inter- 
face. 
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2.4.2. Dendritic growth 
It has long been known that many materials 
solidify from their melts in the form of branched 
needle-like crystals, or dendrites. However, only 
recently has a rigorous quantitative description 
been made of this complex process [see, for 
example, 5]. This treatment, due to Temkin 
[70], applies to the special case of an isolated 
unbranched dendrite (having the shape of a 
semi-infinite paraboloid of revolution and having 
linear interfacial kinetics) growing from a pure 
melt at an otherwise uniform temperature T~. 
When both the velocity of the dendrite tip, Vj 
(tip), and TB have been measured, and physical 
constants such as Ks, KL, and L have been found, 
there remain two unknown quantities in the 
theory; these are the kinetic constant of the 
solidification reaction, /x, and )'ss. If enough 
pairs of values of Vj (tip) and T~ can be obtained, 
and V~ is sufficiently low, both/x and ~'sJ~ can be 
obtained by analysing the data using the compu- 
ter programme available from Kotler and 
Tarshis. 

By applying their programme to the results 
obtained by Lindenmeyer, Kotler and Tarshis 
found ~'sL to be 20 • 2 mJ m -2 for ice-water 
interfaces moving at between 1 and 20 mm sec -1 
[5]. That this figure is less than half the value 
measured directly under near-equilibrium con- 
ditions may well indicate a pronounced depen- 
dence of 7sL on Vi for aqueous systems. Kotler 
and Tarshis [5] also analysed data for pure tin 
but, unfortunately, these results were too 
scattered to allow an absolute measurement of 
7sL to be made. 

In another paper [71] Kotler and Tarshis 
analysed data on assumed dendritic growth in 
white phosphorus obtained by Glicksman and 
Schaefer [72]. They obtained the astonishingly 
low figure for ;esL of 0.93 • 0.05 mJ m -~ (see 
Table I); a similar value of 0.7 was obtained by 
Trivedi [73], using a more rigorous analysis. 
These low figures may reflect the effect on the 
interfacial structure of the unusually high 
transformation velocities encountered (100 to 
2000 mm sec-1); they may also indicate that the 
theory is not applicable [73] partly because of 
the close proximity of neighbouring dendrites. 
However, it is highly likely that white phos- 
phorus does not solidify dendritically in any case. 
The only evidence for this mode of growth is 
indirect, based on light scattering experiments 
[72]; the observed scattering behaviour was 
attributed to interdendritic liquid, but could, 

equally, have been caused by liquid trapped 
between faceted needle crystals of the form 
observed directly by the author (unpublished 
work) at lower velocities. 

In conclusion it would be most interesting to 
apply the dendritic growth technique to other 
pure materials, especially metals, partly in order 
to investigate the effect of rapid growth on 7sL. 
It should also prove possible to examine impure 
systems, as a rigorous analysis (apparently 
unpublished) exists [74] for dendritic growth 
from alloyed melts. 

A somewhat related method, employed by 
Fernandez and Barduhn [75], involved the slow 
growth (at 10 gm sec -1 to 1 mm sec -1) of pure ice 
platelets into rapidly moving, undercooled water 
of temperature TB. The interfacial temperature 
Ti was calculated from the V~ and T• data by 
applying heat-transfer theory. T~ was then re- 
lated to the known curvature of the tip of the 
growing crystal by Equation 2, yielding values 
of the ice-water energy of between 25 and 42 
mJ m -~. It is interesting that these figures, re- 
ferring as they do to intermediate values of V~, 
lie midway between the equilibrium value and 
that obtained from the dendritic growth data. 
This, again, supports the idea of a velocity 
dependent interfacial structure in the ice-water 
system. 

2.4.3. The shape relaxation of liquid 
inclusions in isothermal solids 

Under the driving force of capillarity the shape 
of an extended droplet of segregated liquid in a 
solid will change to decrease its interfacial energy. 
The rate of relaxation will be controlled by the 
transfer of solvent through the liquid and by the 
kinetics of the solid-liquid interface. Using this 
principle Cline and Anthony [76] derived a rough 
value of about 12 mJ m -2 for the energy of the 
interface between KC1 and an aqueous KC1 solu- 
tion at room temperature. Because of the sluggish 
interfacial kinetics in the chosen system, the 
derivation of ~'sL required a knowledge of the 
form of the kinetic law; this was determined in a 
subsidiary experiment involving the migration of 
a brine inclusion through a KC1 crystal in a 
temperature gradient. It should be less tedious, 
however, to measure 7sL for metallic systems by 
this method because the appropriate interfacial 
kinetics may well be negligible. In this connection 
the three-dimensional shapes of inclusions in 
quenched specimens may be observed radio- 
graphically [77], making it possible to observe 
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the relaxation of a single droplet by repeatedly 
quenching and annealing a thin specimen. 

3. Anisotropy of interfacial energy 
The variation in 7sL with the crystallographic 
orientation of the solid-liquid interface may, in 
principle, be determined using several of the 
above experimental techniques. For example, 
when using the groove-shape method (Section 
2.1.2.a), it can be arranged to expose preferen- 
tially a certain crystallographic plane at the 
surface of a given groove; the value of 7SL 
relating to the groove and hence to the given 
crystallographic plane can then be found, and 
the procedure repeated to obtain 7sL as a func- 
tion of crystallographic orientation. However, 
such a technique, involving repeated absolute 
measurements of 7SL, is laborious; and a simpler 
method exists for making relative determina- 
tions of 7SL in a given system. This method arises 
from the fact that the Wulff construction allows 
anisotropy to be determined (within limits) 
from the equilibrium shapes of crystals in an 
isothermal melt (or conversely the equilibrium 
shapes of necessarily impure liquid droplets in 
isothermal solids). The application of the Wulff 
construction in this context has been discussed 
in detail by Miller and Chadwick [78] and will 
not be repeated here. It will be sufficient to remark 
that spherical equilibrium forms indicate iso- 
tropic 7sL, and that non-spherical forms indicate 
anisotropic 7SL. 

Using this method, Miller and his colleagues 
[78-80] determined anisotropies from the shapes 
of highly impure metallic liquid droplets en- 
trained in solid zinc, cadmium, magnesium, 
bismuth, antimony, aluminium, silver, copper and 
lead. This work has been reviewed by Chadwick 
[81] and Basterfield, Miller and Weatherly 
[82] and will be discussed only in relation to 
materials for which ysL has been measured 
absolutely (Table I). In this context the lead- 
alloy interface was found to have an anisotropy 
of 7SL of less than 20 ~ [80] even for high alloy 
contents. Since, in general, anisotropy has been 
shown to decrease with decreasing solute con- 
tent [78, 81], the anisotropy of ySL for pure lead 
should be much smaller than 20 ~ (Table I). In 
the case of bismuth, droplet shapes were observed 
at two temperatures [78] such that we find a small 
extrapolated anisotropy at the melting point 
(Table I) for planes containing "cube" direc- 
tions. 

The author has observed the equilibrium 
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shapes of liquid droplets (at c. 10 K below the 
melting point of the surrounding solid) in solid 
white phosphorus, and in a number of solid 
organic substances [22, 34, 36]. The resulting 
anisotropies are - except in the cases of naphtha- 
lene and diphenyl - either small or negligible 
(see Table I). In view of the high equilibrium 
temperatures, these anisotropies almost certainly 
relate to the pure materials - in contrast to the 
case for the metallic systems studied above. 

It should be pointed out that anisotropies 
derived from droplet shapes may often be 
maximum values. This arises from the fact that 
the reactions at the solid-liquid interface 
sometimes prevent [76] the droplet achieving its 
equilibrium form. Such effects are likely to be 
more serious in the case of highly impure drop- 
lets because of the correspondingly more slug- 
gish kinetics. 

4. Theoretical values of solid-liquid 
energies 

In view of the paucity until recently of directly 
measured values of interfacial energy, some 
attention has been paid to deriving calculated 
values from theoretical models of the solid- 
liquid interface. Because of the complexity of 
cases involving either impure systems, or rapidly 
moving interfaces, such treatments have almost 
all been restricted to pure materials at equilib- 
rium. Even in the latter instance, however, the 
structure of a real solid-liquid interface is 
likely to be far more complex than that of a 
model interface suited to quantitative treatment. 
There is the added problem that a model cannot 
easily take into account the effect of the adsorbed 
monolayers that are probably always present at 
solid-liquid interfaces. We should not, therefore, 
rely on calculated energy values; rather, they 
should be compared with reliable experimental 
figures in order to tell us something about the 
validity of the theoretical models. 

A series of detailed comparisons between 
experimental and theoretical values of ySL merits 
an extended study and is not suited to the scope 
of this paper. However, it is profitable to discuss 
the results of a representative group of theoretical 
treatments in relation to those materials for 
which 7sL has been measured directly (see Table 
I). Skapski [83] has developed what appears to 
be a reasonable [81] model, based on pairwise 
bonding, for calculating solid-vapour energies. 
Unfortunately, in order to calculate ysL from 
the surface energies, it has to be assumed that 
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ysv = ysL + 75v. There is no real physical 
justification for this result [12]; in fact there is 
experimental evidence that in some systems 
~sv < ys5 + ysv [12, 46, 84, 85], whereas in 
others ysv may well be greater than 7'sL + yzv 
[81]. Thus Skapski's figures for lead and gold 
cannot be compared with those in Table I. 

A different approach has been adopted by 
Kotz6 and Kuhlmann-Wilsdorf [86] who cal- 
culated the energies of high-angle grain boun- 
daries for a range of materials, and, with no 
physical justification, assumed ys5 to be half the 
grain-boundary energy. For the materials com- 
mon to this treatment and to Table I, this 
assumption appears to have been verified 
experimentally for ice-water [23, 24] and 
possibly bismuth [47]. The calculated values of 
39 and 68 mJ m -2 for these materials agree 
surprisingly well with the directly measured 
values of 44 • 10 and 74 • 3 mJ m -2 res- 
pectively. 

A third approach has been adopted by Ewing 
[87, 88] who assumed that the solid remains 
undistorted up to the interface, but that the 
positioning of atoms in the liquid normal to the 
interface is described by the radial distribution 
function of the given materials. The entropy 
contribution to 7sL, S, was calculated from the 
shape of the distribution function. The con- 
tribution of the crystal surface to ySL was 
calculated using the relation 7s5 (crystal) = nL 
(molar)/4N, where n is the number density of 
atoms in the surface (assumed planar) and N is 
Avogadro's number, ysL was taken to be the 
sum OfysL (crystal) and Tm 1 S [. Using published 
experimental data on the radial distribution 
function ysL was calculated for six metals. 
Considering the materials listed in Table I, 
values were calculated for lead and gold of 53 
and 148 mJ m -2 respectively. These values are 
in rather poor agreement with experiment, 
possibly reflecting the various sources of error 
mentioned by Ewing. Nevertheless the model is a 
welcome attempt in recognizing and attemp- 
ting to quantify the probably diffuse nature of the 
interface. 

Finally, quantitative progress appears to have 
been made [89] in setting up a model where the 
crystal surface has a hill-and-dale formation, but 
where the surface is distinct or non-diffuse (i.e. 
an atom can be assigned definitely either to the 
liquid or to the solid phase). It would in general 
appear necessary to marry the two latter 
approaches in order to formulate a realistic 

model of solid-liquid interfaces. 

5. Empirical formulae for solid-liquid 
energies 

In order to be able to predict values of 7SL for 
given applications it would be most useful to 
have recourse to empirical formulae. A useful 
result may be adapted from the one given by 
Turnbull [90] such that 

ysr, (experimental) = KL (molar) n/N, (5) 

where K is an empirical constant. The values of 
K obtained from the direct values of )'SL at 
present available (Table I) are plotted in Fig. 10 
against L (molar)/TmR, where R is the gas 
constant. It is very encouraging that for nearly 
all materials having a comparatively low value 
of L (molar)/TmR (and possibly having roughly 
spherical atoms or molecules) K is practically 
constant. However, for substances having more 
asymmetrical molecules, the appropriate value 
of K increases noticeably. The increased scatter 
observed in the latter region of the graph may 
well reflect anisotropies of interfacial energy or 
gross differences in crystal structure. Un- 
doubtedly correlations of the present type over- 
look some important pieces of physics; but they 
would seem capable of predicting interfacial 
energies quite accurately for many materials. 

1.O i = 
AU STEARIC ACID~ 

K BENZENEI NAPHTHALENE/~ 

R '] TZ /TMYRISTIC 
4 s~ 1 T ~| ~ T  ~'ACID 

Pb T B T | | I J - /  ~J- _ 
O'5' ~ y i~ ~_l ~ 1 ~ - - - ~  ~IPHENYL LAURIC ACID 

�9 I IETHYLE.  ,  O ,OE 
CAMPHENE iCE- SUCCINONITRILE 

WATER 

0-5 1.0 1"5 
Ioglo[L(molor)/TrnR] 

Figure 10 Values o f  K (calculated f rom directly measu red  
energies according to Equa t ion  5) plot ted against  
L(molar)/TmR. 

6. Conclusion 
In summary, the experimental work of the last 
few years appears to have established a sound 
body of information on solid-liquid energies. It is 
especially pleasing that, as illustrated by the 
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studies on ice-water, four distinct methods of 
measuring 7sI~ directly are capable of producing 
extremely consistent results. In particular the 
work indicates the inherent reliability of the new 
groove-shape technique, which is most en- 
couraging in view of the flexibility and relative 
convenience of the method. By exerting, for 
example, better control over the thermal 
configuration of the experimental system it 
should be relatively easy to improve significantly 
the accuracy obtainable with the technique; and 
the results of applying the method to alloyed 
systems are likely to be very rewarding. 
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